Thai Association for the Study of the Liver (THASL)

Management of Nonalcoholic Fatty Liver Disease

Phunchai Charatcharoenwitthaya, MD.

Gastroenterology Division, Medicine Department Faculty of Medicine Siriraj Hospital, Mahidol University

- 69-year-old woman with obesity
- Underlying disease: T2DM, HTN, and dyslipidemia.
- Taking metformin (1000 mg twice daily), losartan and atorvastatin.
- Personal history: no alcohol use or blood transfusion.
- Blood testing: mild elevation of AST and ALT \sim 1.5-2.0 x ULN
- Ultrasound of the liver shows fatty liver
- Physical examination: central adiposity with BMI of 35.0 kg/m².

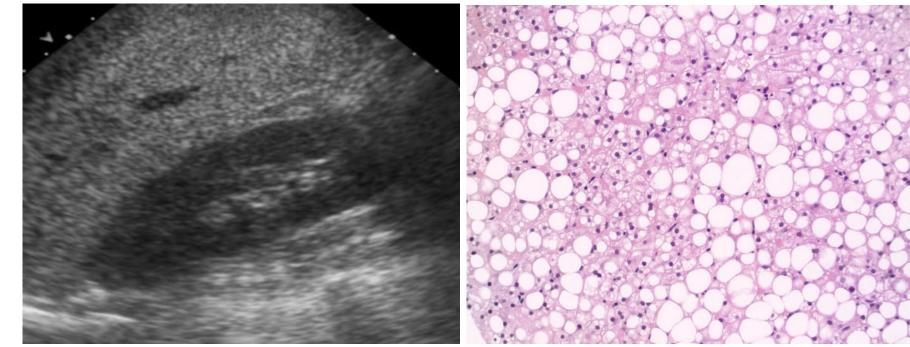
Case: An obese woman with T2DM

Laboratory test results:

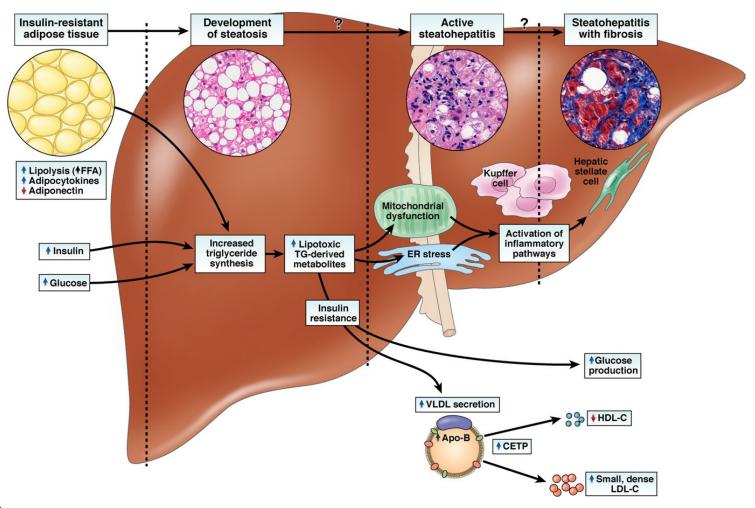
- Fasting glucose = 127 mg/dL (70-99 mg/dL)
- Hemoglobin A1c = 7.5% (4.0%-5.6%)
- AST = 39 U/L (7-40 U/L)
- ALT = 52 U/L (7-40 U/L)
- Albumin = 3.5 g/dL (3.4-5.4 g/dL)
- Platelet count = $132 \times 10^3 / \mu L (150 450 \times 10^3 / \mu L)$
- Triglycerides = 290 mg/dl (<150 mg/dL)

Clinical Questions: 1. Does this patient have NAFLD? 2. Could this patient have significant liver fibrosis?

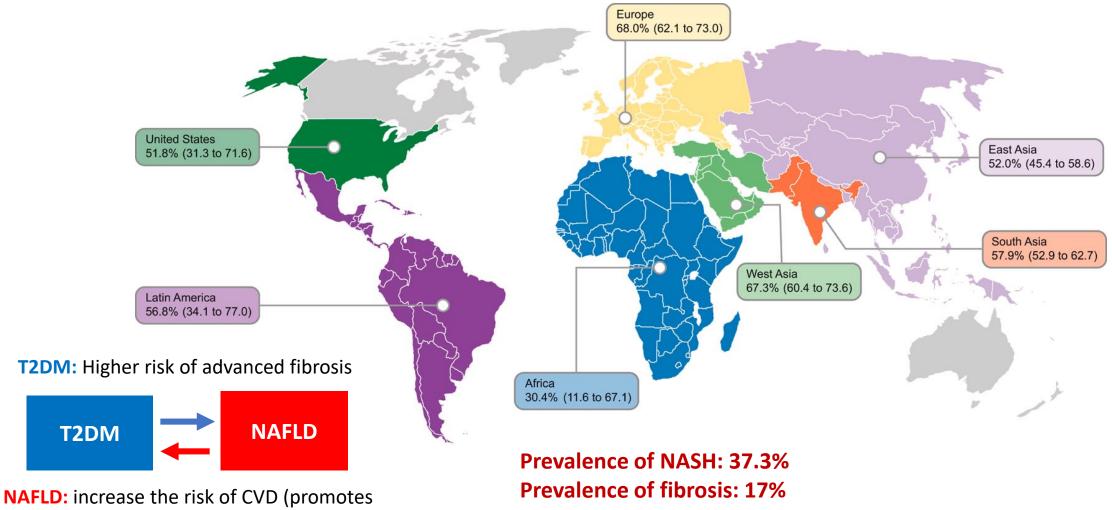
3. What is optimal management ?


Nonalcoholic Fatty Liver Disease (NAFLD)

Diagnostic criteria

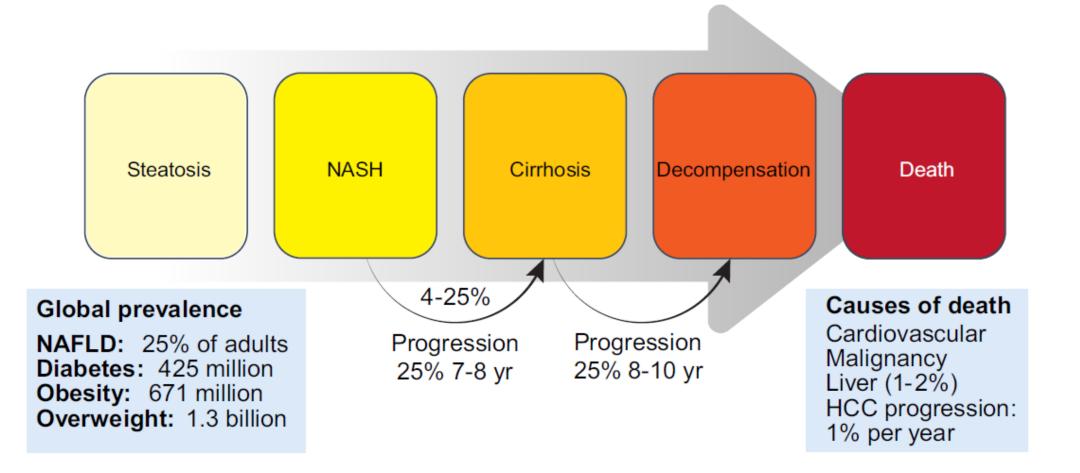

- Steatosis in ≥ 5% hepatocytes
- Minimal alcohol use
- No other etiology for liver disease
- No secondary causes of NAFLD
 - Medications
 - HIV
 - Lipodystrophy

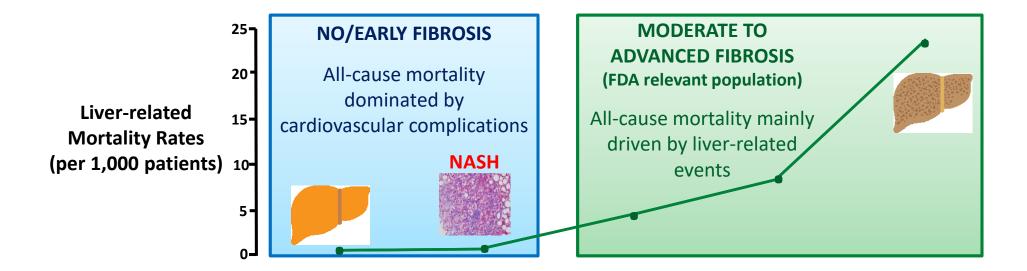
Moderate drinking defined as less than 2 drink/day for male and 1 drink/day for female



The Pathogenesis of Non-Alcoholic Fatty Liver Disease (NAFLD)

Cusi K. Gastroenterology 2012


Global Prevalence of NAFLD among T2DM: 55.5%


Younossi et al, J Hepatology 2019

dyslipidemia, hyperinsulinemia, inflammation)

The Spectrum of NAFLD

Prognostic Significance of Liver Histology in NAFLD

Fibrosis stage	FO	F1	F2	F3	F4			
Prevalence	NAFLD) ~25%	NASH 1.5% to 6.45%					
Main Cause of Death	Cardiovascu	ılar Disease		Liver Disease				
Time to progression	One fibrosis stage every 7 years							

Angulo P, et al. Gastroenterology. 2015; Dulai PS, et al. Hepatology. 2017

Case: An obese woman with T2DM

Clinical or Laboratory Scores

Simple

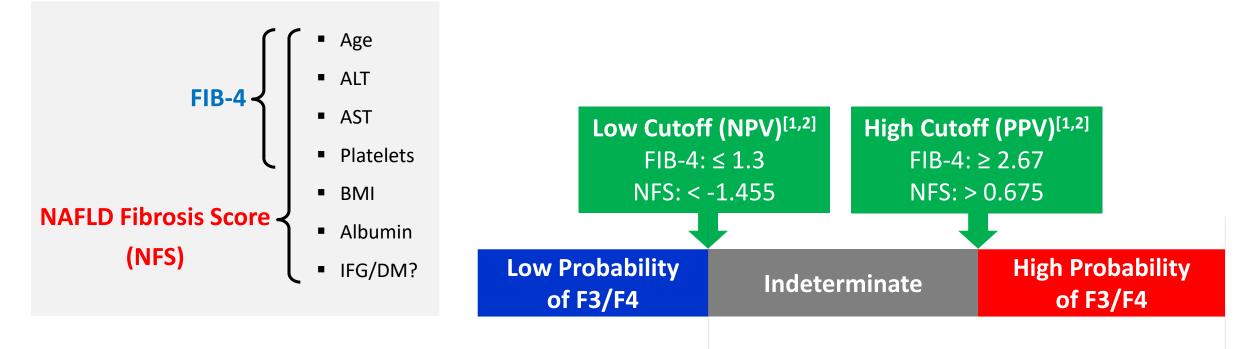
- Fibrosis-4 (FIB-4)^[1,2]
- NAFLD fibrosis score^[1,2]
- AST/platelet ratio index^[1]

Proprietary

- Enhanced Liver Fibrosis Test^[1] (not available in US)
- NIS4
- ADAPT/Pro-C3^[3]
 (not available in US)
- FibroSure^[1]
- Hepascore

Imaging

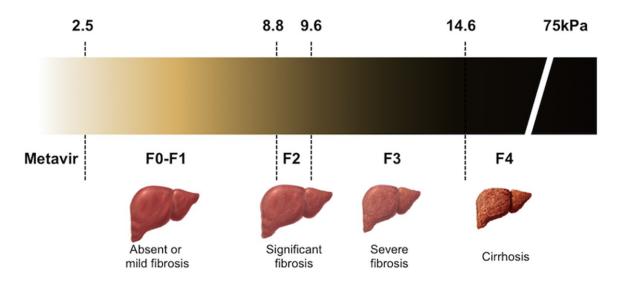
Elastography


- Transient elastography (eg, FibroScan)^[1,2]
- 2D shear wave elastography^[4]
- Magnetic resonance elastography^[1]

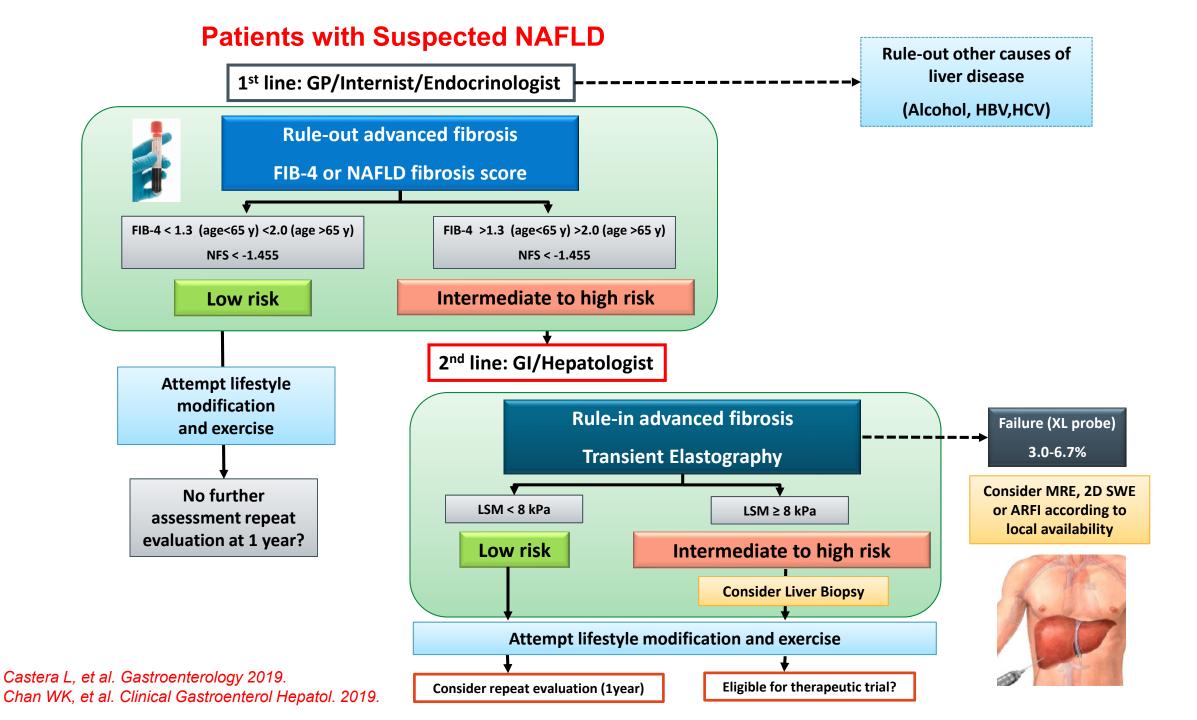
Clinical Questions: 1. Does this patient have NAFLD?

- 2. Could this patient have significant liver fibrosis?
- 3. What is optimal management ?

Diagnosis: Nonproprietary Panels


FIB-4 = $\frac{\text{Age (yrs) x AST (U/L)}}{\text{Plts (10⁹/L) x }\sqrt{\text{ALT (U/L)}}}$

NFS = -1.675 + 0.037 x age [yrs] + 0.094 x BMI (kg/m²) + 1.13 x IFG/DM (yes = 1, no = 0) + 0.99 x AST/ALT – 0.013 x plts ($10^9/L$) – 0.66 x albumin (g/dL)


1. Alkhouri. Gastroenterol Hepatol (N Y). 2012. 2. Shah. Clin Gastroenterol Hepatol. 2009.

Hepatic Elastography for Staging Fibrosis

- Most reliable in ruling out advanced hepatic fibrosis (NPV > PPV)^[2]
 - Fibrosis unlikely with a low value (< 6 kPa)
- Higher values increase the likelihood of more severe fibrosis, predicts the risk of decompensation and complications^[3]
- Overestimation of fibrosis can occur in cases of hepatitis, cholestasis, liver congestion, obesity, and if mass lesions are present in the liver^[1,3]

Case: An obese woman with T2DM

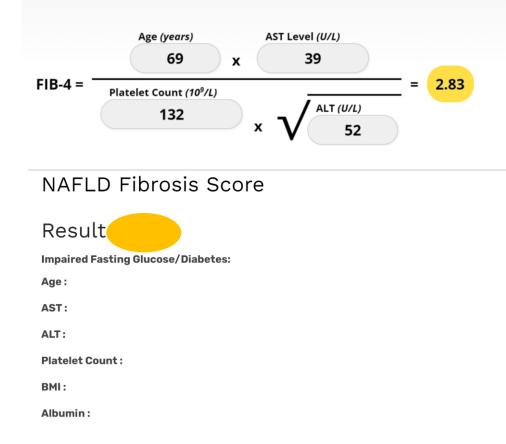
Fibrosis-4 (FIB-4) Calculator

🔀 Share

Yes ~

69

39


52

132

35

3.5

The Fibrosis-4 score helps to estimate the amount of scarring in the liver. Enter the required values to calculate the FIB-4 value. It will appear in the oval on the far right (highlighted in yellow).

Clinical Questions: 1. Does this patient have NAFLD?

- 2. Could this patient have significant liver fibrosis?
- 3. What is optimal management ?

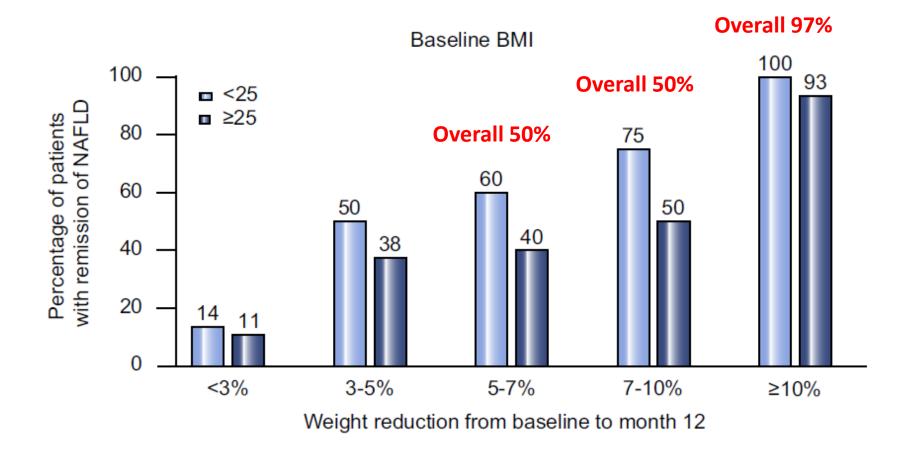
Case: An obese woman with T2DM

Role for general physician (in addition to promoting lifestyle

interventions):

- ✓ Not only to optimize glycemic control
- ✓ Identify patients at risk for disease progression
- ✓ Optimal management for NAFLD
- ✓ Cardiovascular risk management

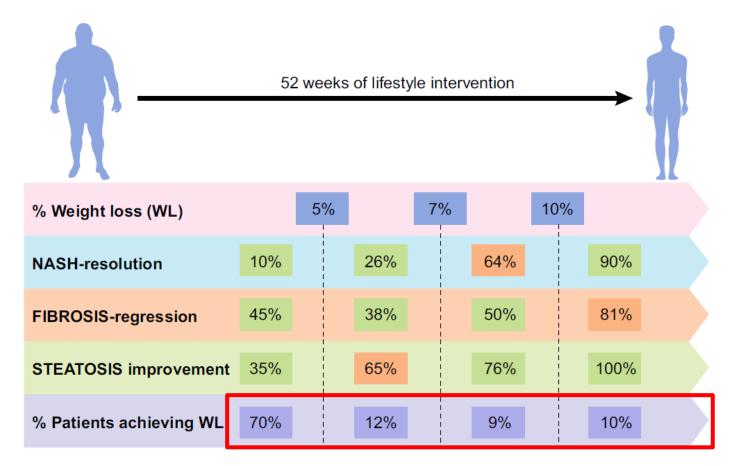
Clinical Questions:
1. Does this patient have NAFLD?
2. Could this patient have significant liver fibrosis?
3. What is NAFLD


management?

Lifestyle Intervention is the Most Effective Non-pharmacologic Therapy for Patients with NAFLD

Author	Ν	Lifestyle intervention (vs. control)	Duration, weeks	Mean weight loss	Hepatic triglyceride	Liver histology	Cardiovascular risk
Promrat ⁷	31 NASH	Low-fat (25%) diet + 200 min/week moderate-intensity PA + CBT	48	-8.7 kg	n.a.	Improved steatosis, NAS	No difference in glucose or HOMA-IR
Eckard ⁸	41 NAFLD	Low-fat (20%) diet + moderate exercise vs. low-carbohydrate (50%) diet + moderate exercise vs. moderate PA/exercise	26	-0.2 lbs vs. -3.0 lbs vs. 0.1 lbs	n.a.	Improved NAS vs. Improved NAS vs. No improvement	n.a.
Ueno ⁹	25 NAFLD	Low (30%) fat diet + 210 min/week vigorous PA	12	n.a.	n.a.	Improved steatosis	Improved cholesterol and triglyceride
Wong ⁶	145 NAFLD	Low-fat, low GI diet + 210 mins/week moderate PA	52	-5.6 kg	-6.7% (MRS)	n.a.	Improved LDL- cholesterol
Gepner ³	278 Obese or dyslipidaemia (53% NAFLD)	Low-fat diet vs. low-carbohydrate/ med. diet ± 180 min/week moderate PA	78	-3.2%*	-5.8% vs. -7.3%	n.a.	Improved HbA1c
Sun ⁵	1,024 NAFLD	Low-fat (30%), low-sugar diet + 27 MET/hr/week PA/exercise	52	-7 kg	No difference (CT)	n.a.	Improved HOMA-IR and cholesterol
St George ⁴	152 elevated ALT and HOMA-IR	Low saturated fat, caloric restricted diet + 150 min/week moderate PA + 3 vs. 6 counselling sessions	12	-1.9 kg vs. -2.8 kg	n.a.	n.a.	Improved cholesterol and triglyceride

*No difference between groups. ALT, alanine aminotransferase; GI, glycaemic index; HbA1c, glycated haemoglobin; HOMA-IR, homeostasis model of assessment - insulin resistance; MET, metabolic equivalent of tasks; NAFLD, non-alcoholic fatty liver disease; n.a., not assessed; NAS, NAFLD activity score; NASH, non-alcoholic steatohepatitis; PA, physical activity.


A 12-month RCT involving an American Dietetic Association Low Fat, Low-glycemic Index Diet with 90–150 min/week of Moderate-intensity Exercise

Wong et al. J Hepatol 2018

The Impact of Lifestyle-induced Weight Loss on Liver Histology

A single-arm clinical trial of 261 patients with biopsy-proven NASH who underwent repeat liver biopsies after 12 months of lowfat hypocaloric diet (750 kcal less than daily requirement) in association with 200 min/week of low intensity exercise (walking).

Romero-Gomez et al. J Hepatol 2017; Vilar-Gomez et al. Gastroenterology 2015

Extra-hepatic Benefits of Lifestyle Intervention in NAFLD

Improvement in metabolic control (fasting glucose and insulin sensitivity)

- 8-weeks resistance exercise decreased FG form 6.0 to 5.5 mmol/l
- HOMA-IR decreased from 5.9 to 4.6 (indicating and increase in insulin sensitivity)

Change in body composition

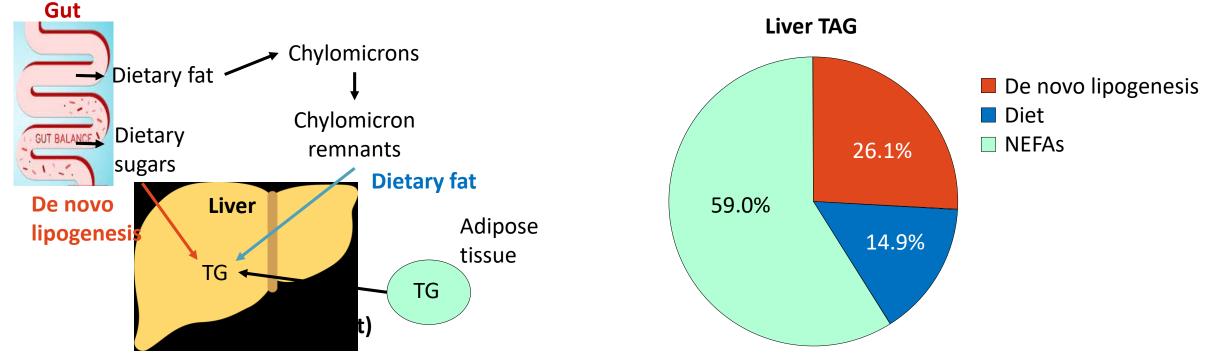
- 12-week HIIT reduced body fat by 1.8 kg despite patients remaining weight neutral
- 12-weeks combination exercise reduced visceral fat by 12%

Reduction in circulating triglycerides and improvements in whole-body fat oxidation

- 12-weeks combination exercise reduced triglycerides by 23%
- 8-weeks resistance exercise decreased RQ during exercise

Improvements in cardiac function

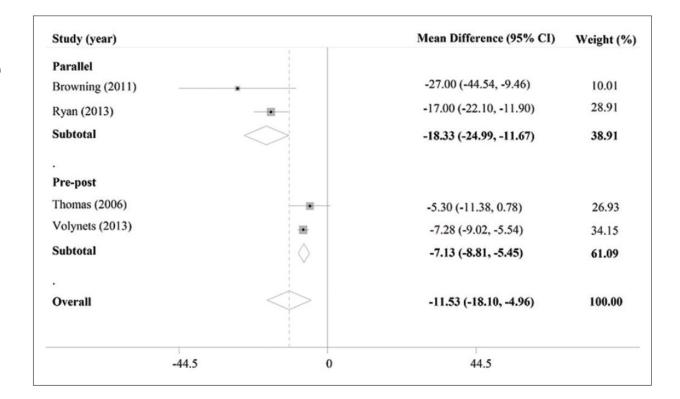
• 12-weeks HIIT improved diastolic function and reduced cardiac torsion in NAFLD


Hypocaloric Diet is an Important Component of Non-pharmacologic Therapy for Patients with NAFLD

Author	Ν	Lifestyle intervention (vs. control)	Duration, weeks	Mean weight loss	Hepatic triglyceride	Liver histology	Cardiovascular risk
Promrat ⁷	31 NASH	Low-fat (25%) diet + 200 min/week moderate-intensity PA + CBT	48	-8.7 kg	n.a.	Improved steatosis, NAS	No difference in glucose or HOMA-IR
Eckard ⁸	41 NAFLD	Low-fat (20%) diet + moderate exercise vs. low-carbohydrate (50%) diet + moderate exercise vs. moderate PA/exercise	26	-0.2 lbs vs. -3.0 lbs vs. 0.1 lbs	n.a.	Improved NAS vs. Improved NAS vs. No improvement	n.a.
Ueno ⁹	25 NAFLD	Low (30%) fat diet + 210 min/week vigorous PA	12	n.a.	n.a.	Improved steatosis	Improved cholesterol and triglyceride
Wong ⁶	145 NAFLD	Low-fat, low GI diet + 210 mins/week moderate PA	52	-5.6 kg	-6.7% (MRS)	n.a.	Improved LDL- cholesterol
Gepner ³	278 Obese or dyslipidaemia (53% NAFLD)	Low-fat diet vs. low-carbohydrate/ med. diet ± 180 min/week moderate PA	78	-3.2%*	-5.8% vs. -7.3%	n.a.	Improved HbA1c
Sun ⁵	1,024 NAFLD	Low-fat (30%), low-sugar diet + 27 MET/hr/week PA/exercise	52	-7 kg	No difference (CT)	n.a.	Improved HOMA-IR and cholesterol
St George ⁴	152 elevated ALT and HOMA-IR	Low saturated fat, caloric restricted diet + 150 min/week moderate PA + 3 vs. 6 counselling sessions	12	-1.9 kg vs. -2.8 kg	n.a.	n.a.	Improved cholesterol and triglyceride

*No difference between groups. ALT, alanine aminotransferase; GI, glycaemic index; HbA1c, glycated haemoglobin; HOMA-IR, homeostasis model of assessment - insulin resistance; MET, metabolic equivalent of tasks; NAFLD, non-alcoholic fatty liver disease; n.a., not assessed; NAS, NAFLD activity score; NASH, non-alcoholic steatohepatitis; PA, physical activity.

Sources of Hepatic Triglycerides: Dietary Fat, Dietary Sugar, or Stored Fat?


- Study using multiple stable isotope fatty acid labeling in patients with NAFLD scheduled to undergo liver biopsy (N = 9)
 - Allows quantitation of 3 fatty acid delivery pathways

Donnelly. J Clin Invest. 2005

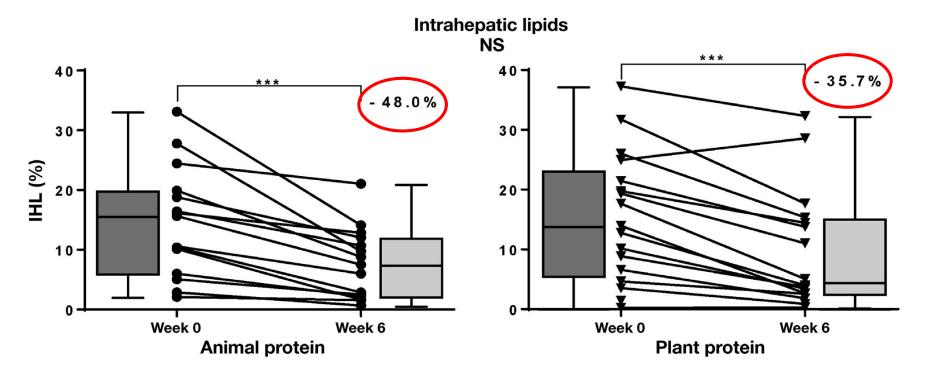
Meta-analysis of Low-Carbohydrate Diets in NAFLD

- Meta-analysis of 10 international clinical trials of low-carbohydrate (< 50%) diets in patients with NAFLD
 - 10 evaluated ALT (n = 238)
 - 9 evaluated AST (n = 216)
 - 5 evaluated GGT (n = 91)
 - 4 evaluated intrahepatic lipid content (n = 50)

Low-carbohydrate diets associated with **significant reduction in intrahepatic lipid content**, but did not affect the concentration of liver enzymes

Haghighatdoost et al. J Res Med Sci. 2016

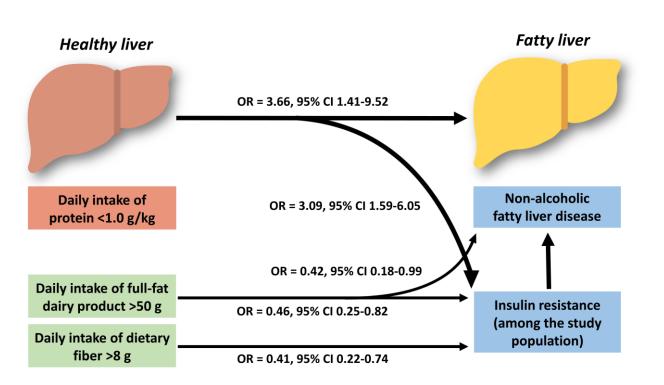
Head-to-Head Comparisons of Low-Carb vs Low-Fat Diets


Study Population	N	Mos	Comparison	Results	Difference Between Diets?
Obese with insulin resistance ^[1]	52	4	60% carb + 25% fat vs 40% carb + 45% fat	 Significant reductions in weight, SSPG, circulating insulin, serum ALT ALT reductions greater with 40% carb diet 	Yes
Overweight and obese, otherwise healthy ^[2]	170	6	Reduced carb vs reduced fat	 Similar reductions in weight, body fat, visceral fat, ALT, intrahepatic lipids 	No
Obese with or without NAFLD ^[3]	162	3	Low fat vs low carb	 Reductions in weight, BP, cholesterol In patients with NAFLD, similar reductions in glucose, triglycerides, transaminases 	No

1. Ryan. Diabetes Care. 2007; 2. Haufe. Hepatology. 2011; 3. de Luis. Nutr Hosp. 2010

NAFLD – Isocaloric Protein-Rich Diet Reduces Steatosis

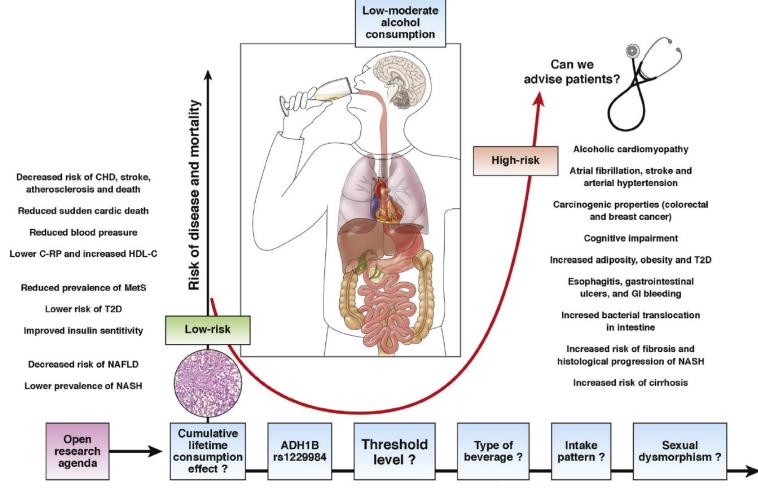
Intrahepatic lipid content (¹H-MRS) before and after


6 weeks isocaloric protein-rich diet (30% calories) in T2DM patients

Both Animal and Plant protein-rich diets showed beneficial effect associated with the improvement of insulin sensitivity.

Markova et al. Gastroenterology 2017

Dietary Composition and Its Association with Newly Diagnosed NAFLD and Insulin Resistance



All ORs adjusted for: Age, sex, healthcare professional and total calorie intake

- We enrolled 252 adults: 41 medical personnel with NAFLD & 211 persons without NAFLD took photographs of their meals and documented their food intake in a food diary for 7 consecutive days.
- Total energy intake and the proportion of carbohydrate, fat, and protein consumption did not differ between participants with NAFLD and those without NAFLD.
- A high intake of full-fat dairy products and dietary fiber has been associated with a potential protective effect against NAFLD and insulin resistance.

Charatcharoenwitthaya et al. Nutrients. 2021

The Current Epidemiologic Evidence of Modest Alcohol Consumption on Liver Disease

Alcohol consumption (g/day)

Sookoian & Pirola Gastroenterology 2016

Modest Alcohol Consumption in NAFLD

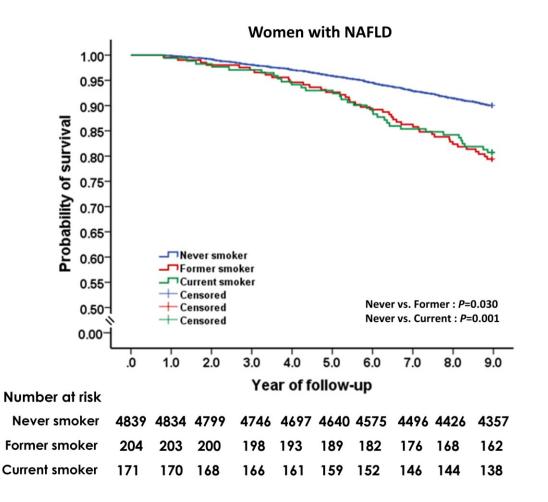
Steatohepatitis

	Modest dri	nkers	Non-drin	kers		Odds Ratio		Odds Ratio
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year	M-H, Random, 95% Cl
Dixon 2001	4	17	16	48	4.6%	0.62 [0.17, 2.19]	2001	
Cotrim 2009	66	75	49	57	6.9%	1.20 [0.43, 3.33]	2009	
Dunn 2012	176	331	176	252	43.4%	0.49 [0.35, 0.69]	2012	
Yamada 2018	31	77	47	101	18.3%	0.77 [0.42, 1.41]	2018	
Ajmera 2018	96	168	86	117	24.0%	0.48 [0.29, 0.80]	2018	_
Tan 2020	14	16	45	55	2.8%	1.56 [0.30, 7.96]	2020	
Total (95% CI)		684		630	100.0%	0.59 [0.45, 0.78]		◆
Total events	387		419					
Heterogeneity: Tau ² =	= 0.01; Chi ² =	5.65, df	= 5 (P = 0.	34); l² =	12%			
Test for overall effect:		-	-					0.1 0.2 0.5 1 2 5 10 Modest drinkers Non-drinkers

Advanced fibrosis

	Modest drir	nkers	Non-drin	kers		Odds Ratio			Odds	Ratio	
Study or Subgroup	Events	Total	Events	Total	Weight	M-H, Random, 95% Cl	Year		M-H, Rando	m, 95% Cl	
Dunn 2012	69	331	83	252	16.5%	0.54 [0.37, 0.78]	2012				
Kwon 2014	8	52	9	25	9.2%	0.32 [0.11, 0.98]	2014				
Hagstrom 2017	11	60	23	60	11.8%	0.36 [0.16, 0.83]	2017				
Kimura 2018	27	93	50	208	14.8%	1.29 [0.75, 2.24]	2018		-+		
Mitchell 2018	12	91	26	74	12.4%	0.28 [0.13, 0.61]	2018				
Yamada 2018	13	77	26	101	12.7%	0.59 [0.28, 1.23]	2018			-	
Ajmera 2018	66	168	34	117	15.2%	1.58 [0.95, 2.62]	2018		+		
Tan 2020	3	16	23	55	7.4%	0.32 [0.08, 1.26]	2020	_		_	
Total (95% CI)		888		892	100.0%	0.59 [0.36, 0.95]			-		
Total events	209		274								
Heterogeneity: Tau ² =	0.33; Chi ² = 3	27.80, d	f = 7 (P = 0).0002);	I² = 75%			0.05	02 1		
Test for overall effect: Z = 2.16 (P = 0.03)								0.05	0.2	5 Non-drinkers	20

Development of HCC

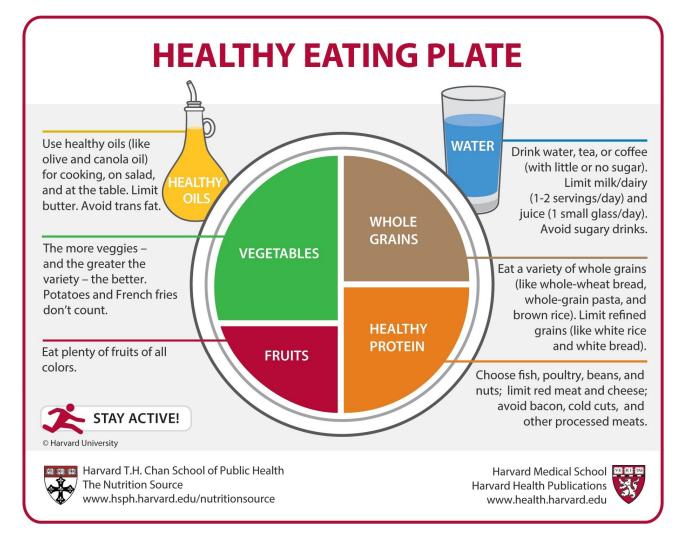

		No	n-drinkers	Modest drinkers		Hazard Ratio	Hazar	d Ratio			Me	odest drinkers Non-d	rinkers	Hazard Ratio	Haza	d Ratio	
Study or Subgroup	log[Hazard Ratio]	SE	Total	Total	Weight	IV, Fixed, 95% Cl Year	IV, Fixed	I, 95% CI	Study or Subgroup	log[Hazard Ratio]	SE	Total	Total Weight	IV, Random, 95% Cl Year	IV, Rand	om, 95% Cl	
Ascha 2010	1.2809 0	4467	120	68	77.3%	3.60 [1.50, 8.64] 2010			Hajifathalian 2019 (1)	-0.4463	0.2149	874	3318 10.6%	0.64 [0.42, 0.98] 2019		-	
Kimura 2018	1.4884 0.	8246	93	208	22.7%	4.43 [0.88, 22.30] 2018	-		Aberg 2020 (2)	-0.2357	0.0917	4429	993 58.3%	0.79 [0.66, 0.95] 2020		·	
									Aberg 2020 (3)	-0.1393	0.1257	1443	0 31.0%	0.87 [0.68, 1.11] 2020		+	
Total (95% CI)			213	276	100.0%	3.77 [1.75, 8.15]		-									
Heterogeneity: Chi²	² = 0.05, df = 1 (P = 0.82);	I²=0%							Total (95% CI)			6746	4311 100.0%	0.80 [0.69, 0.91]	•		
Test for overall effect	ct: Z = 3.38 (P = 0.0007)						0.05 0.2 Non-drinkere	Modest drinkers	Heterogeneity: Tau² = 0		2 (P = 0.46)	; I² = 0%			02 05	1 1	<u> </u>
							NUT-UTTRETS	Modest uninters	Test for overall effect: Z	(= 3.26 (P = 0.001)					Modest drinkers	Non-drinkers	3

Footnotes (1) Alcohol drinkers 0.5-1.4 drinks/day vs. Non-drinkers (2) Alcohol drinkers 0-9 g/day vs. Non-drinkers (3) Alcohol drinkers 10-19 g/day vs. Non-drinkers

Wongtrakul W, Niltwat S, Charatcharoenwitthaya P. Front Med. 2021

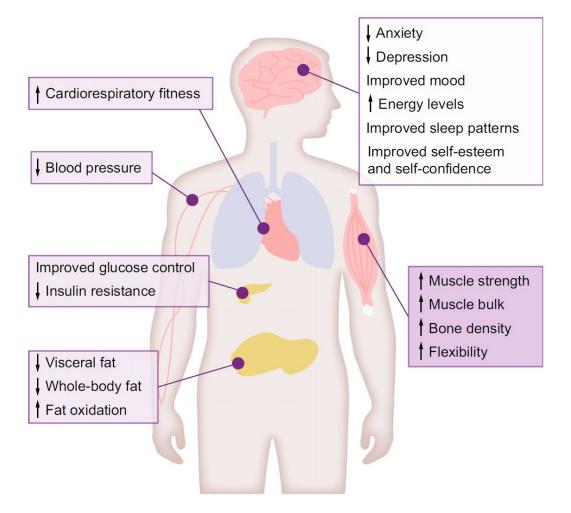
Mortality for light alcohol consumption

The Synergistic Effect of Modest Alcohol Intake and Cigarette Smoking on Overall Mortality in Patients with NAFLD



- A population-based cohort study
 - 7,529 Thai people with NAFLD
 - A mean follow-up of 8.5±1.4 years
- Women who had both current smoking and drink alcohol 10-20 grams per day had significantly increased risk of death
 - Adjusted Hazard ratio: 13.8, 95% CI: 1.66–145 after adjusting for age, BMI, exercise, comorbidities, lipid profiles, and handgrip strength

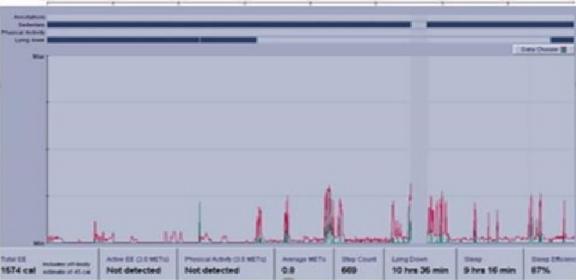
Charatcharoenwitthaya et al. Front Med (Lausanne). 2020


Dietary Modification: Recommendation

- "Healthy eating" (instead of "dieting")
- Eliminate sugar-sweetened beverages (get history from every patient—it's shocking)
- Use healthy oils (olive, canola)
- More vegetable and the greater variety
- Portion control
- Avoid fast food
 - Calorie dense (1300 cal and more fat than a stick of butter in some commonly marketed burgers)
- Avoid eating at night

https://www.hsph.harvard.edu/nutritionsource/healthy-eating-plate/

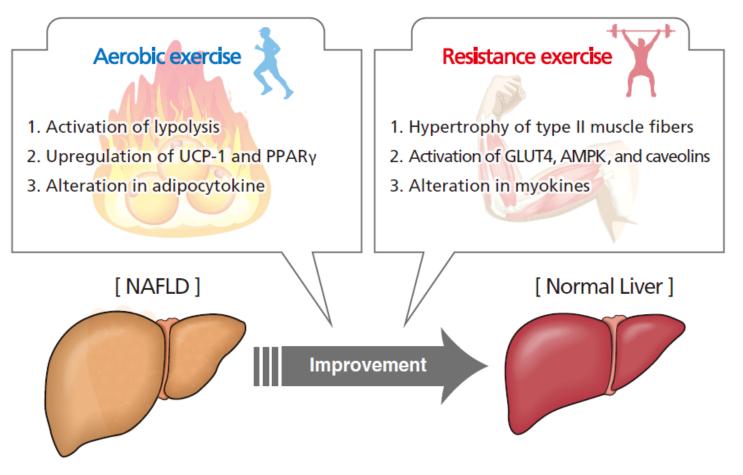
Benefits of Physical Activity and Exercise for NAFLD


Hallsworth K & Adams LA. JHEP Reports 2019

Physical Activity and Sedentary Behavior in NAFLD

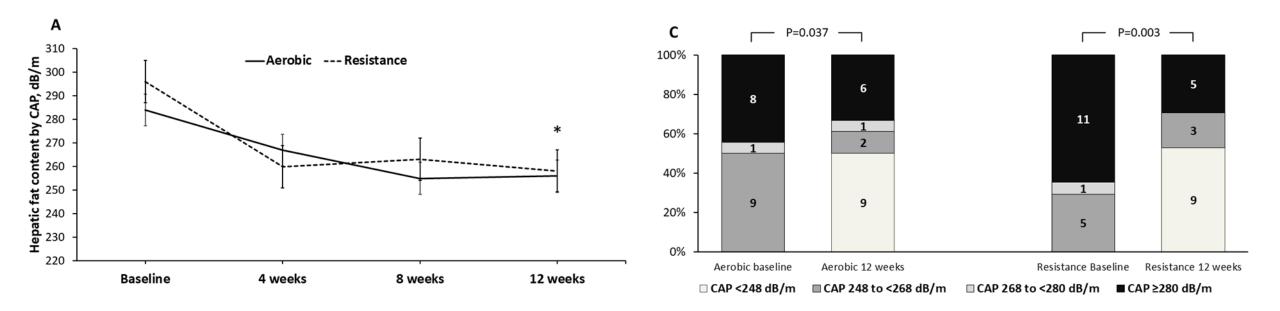
People with NAFLD took less steps/day than those without fatty liver (8281 vs. 9987steps/day) People with NAFLD spend more time pursuing sedentary behaviors than healthy controls (>5 hours extra sedentary time/week)

63yr old female without NAFLD



63yr old female with NAFLD

Hallsworth K, et al. Frontline Gastroenterology 2015


Different Mechanisms for the Improvement of NAFLD between Aerobic and Resistance Exercises

Hashida R, et al. J Hepatol 2017

Moderate-Intensity Aerobic vs Resistance Exercise and Dietary Modification in Patients With NAFLD: RCT

With a 12-week supervised training program of moderate-intensity exercise, 18 NAFLD subjects exercised for an average of 3.35 ± 0.30 sessions a week in the aerobic group, and 17 NAFLD subjects exercised an average of 3.39 ± 0.28 sessions a week in the resistance group.

Charatcharoenwitthaya et al. Clin Transl Gastroenterol. 2021

Recommendations for Exercise Prescription for NAFLD

- Aerobic (e.g. jogging, cycling):
 - **150-300 min/week of moderate-to-vigorous intensity** (50%-70% VO₂peak) ≥**3 days/week**
- Resistance (strength training):
 - 2-3 sets of 8-12 repetitions (70-85% 1RM) 2-3 days/week
- For weight maintenance: \uparrow volume of exercise
- For improvement in cardiorespiratory fitness and glycemic control: \uparrow intensity of exercise
- "Exercise prescription should be individualized to promote adoption and long-term adherence to the exercise regimen, which may be facilitated by behavioral and cognitive strategies."

Keating SE, et al. Expert Rev Gastroenterol Hepatol 2015

Case: An obese woman with T2DM

What specific treatment has been shown to result in a significant proportion of patients achieving resolution of NASH when compared with placebo?

- A. Vitamin E
- B. Pioglitazone
- C. Liraglutide
- D. Semaglutide

Clinical Questions:
1. Does this patient have NAFLD?
2. Could this patient have significant liver fibrosis?
3. What is specific NAFLD treatment?

Pharmacotherapy in NAFLD Reserved for Patients With NASH and Fibrosis

AASLD¹

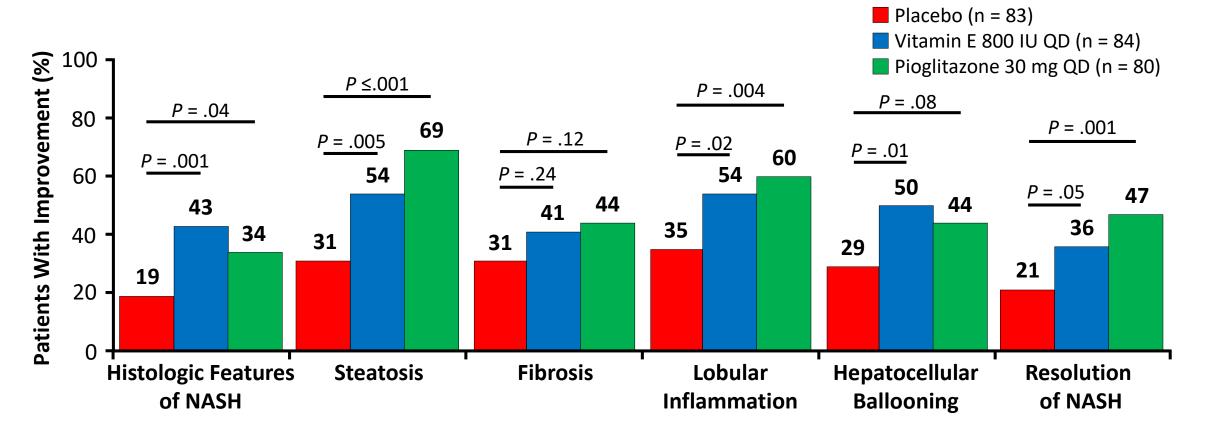
 Pharmacologic treatments should generally be limited to those with *biopsy-proven* NASH and fibrosis

EASL-EASD-EASO²

- Pharmacotherapy should be reserved for *patients* with NASH, esp. significant fibrosis.
- Patients at high risk of progression (diabetes, MetS, persistently increased ALT,) could also be candidates

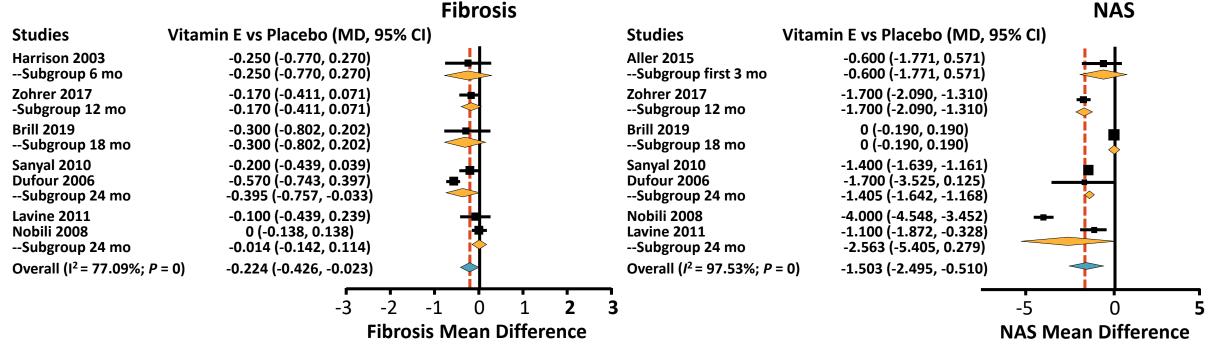
APASL³

Patients *without steatohepatitis or fibrosis*should receive counseling
for a healthy diet and
physical activity and *no pharmacotherapy* for their
liver disease


	AASLD 2018	EASL-EASD-EASO 2016	APASL 2020
Vitamin E	Recommended in nondiabetic patients with biopsy-proven NASH (800 IU/day)	Recommended (800 IU/day)	Insufficient evidence, no firm recommendation
Pioglitazone	Recommended in patients with and without T2D and biopsy-proven NASH	Recommended in patients with T2	2D and biopsy-proven NASH

1. Chalasani. Hepatology. 2018; 2. EASL, EASD, EASO. J Hepatol. 2016; 3. Eslam. Hepatol Intern. 2020.

PIVENS: Pioglitazone and Vitamin E in NASH at 96 Wk


а

 Double-blind, placebo-controlled, randomized phase III study in adults with biopsyproven NASH and no diabetes or cirrhosis (N = 247)

Meta-analysis: Vitamin E Reduces NAS and Fibrosis in NAFLD

- Meta-analysis of N = 1317 patients with NAFLD in 15 RCTs
 - Study limitations: variations in definition of NAFLD; moderately small sample sizes

 Most promising patient for vitamin E treatment: an obese patient aged 15-50 yr, baseline AST >50 IU/L, daily intake of 400-800 IU vitamin E, liability to lose 5-10 kg

Abdel-Maboud. Therap Adv Gastroenterology. 2020.

Pioglitazone in NASH Without Diabetes

- Subset of n = 5 pioglitazone studies in systemic review and metanalysis of randomized trials examining outcomes in NASH patients with advanced fibrosis at baseline (N = 298 patients)
- In biopsy-proven NASH, pioglitazone associated with improvement in advanced fibrosis

	Piog	litazone	Control		Odds Ratio	Favors	Favors		
Source	No. of Events	No. of Patients	No. of Events	No. of Patients			Pioglitazone		
Pioglitazone									
Aithal 2008	3	31	0	30	7.49 (0.37-151.50)				
Belfort 2006	7	26	0	21	16.54 (0.89-308.98)		>		
Cusi 2016	4	50	0	51	9.97 (0.52-190.16)	_			
Sanyal 2004	1	10	1	10	1.00 (0.05-18.57)				
Sanyal 2010	6	80	2	83	3.28 (0.64-16.78)	_			
Total (95% CI)	21	197	3	195	4.53 (1.52-13.52)				
Heterogeneity: T ² = 0; x ^{2/2} = 2.39; P = .66; I ² =0%									
Overall effect: z = 2.71; P = .007									
					0.0)1 0.1 1.	0 10 100		
					OR (95% CI)				

Musso. JAMA Intern Med. 2017;177:633.

How to Use Pioglitazone in NASH?

Start pioglitazone at 30 mg/day

Monitor every 3 months for potential AEs:

- Weight gain: 2.5-5.2%
- Edema: 5-8% (more if combined with insulin)
- Bone loss: should be monitored (obtain DXA)
- Bladder cancer? Likely very small (18 out of 23 studies negative)

Poor candidates:

BMI ≥40 kg/m², high dose-insulin or amlodipine use, osteoporosis

Do not use in CHF

- Rates of CHF in a meta-analysis of 19 trials, 2.3% vs. 1.8% in control group (p=0.002).

Case: An obese woman with T2DM

What second-line therapy after metformin (for management of hyperglycemia) has been shown to result in a significant proportion of patients achieving resolution of NASH when compared with placebo?

- A. Pioglitazone
- B. Liraglutide

C. Semaglutide

D. Empagliflozin

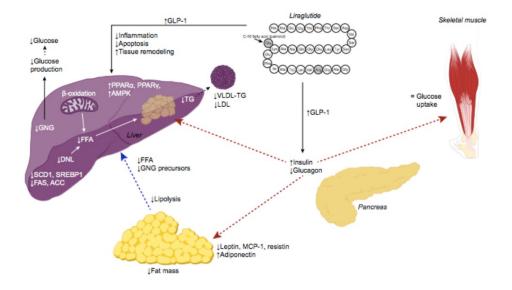
Clinical Questions:
1. Does this patient have NAFLD?
2. Could this patient have NASH with fibrosis?
3. What is CV risk management ?

Pharmacotherapy in NAFLD and NASH (Off Label)

Compound	Mechanism of Action	Weight Loss	Trial in NAFLD/NASH	Outcome
Liraglutide ²	GLP-1 RA	Approved for treatment of obesity	Phase IIb LEAN	Resolution of histologic NASH without fibrosis worsening
Semaglutide ³	GLP-1 RA	+++	Phase II	Resolution of histologic NASH without fibrosis worsening
Canagliflozin ⁵	SGLT2	++	Multiple studies	Improvement in liver triglycerides by ¹ H- MRS; improvement in steatosis biomarkers
Empagliflozin ^{6,7}	SGLT2	+	Multiple studies	Improvement of liver fat by MRI-PDFF; improvement in CAP and liver stiffness

Chalasani. Hepatology. 2018; 2. Armstrong. Lancet. 2016; 3. Newsome. NEJM. 2021.
 Shao. Diabetes/Metabolism Research Reviews. 2014; 5. Cusi. Diabetes Obes Metab. 2019.
 Kuchay. Diabetes Care. 2018; 7. Taheri. Advanc Ther. 2020.

Metabolic Effects of GLP1RA Leading to An Improvement in Hepatic Parameters

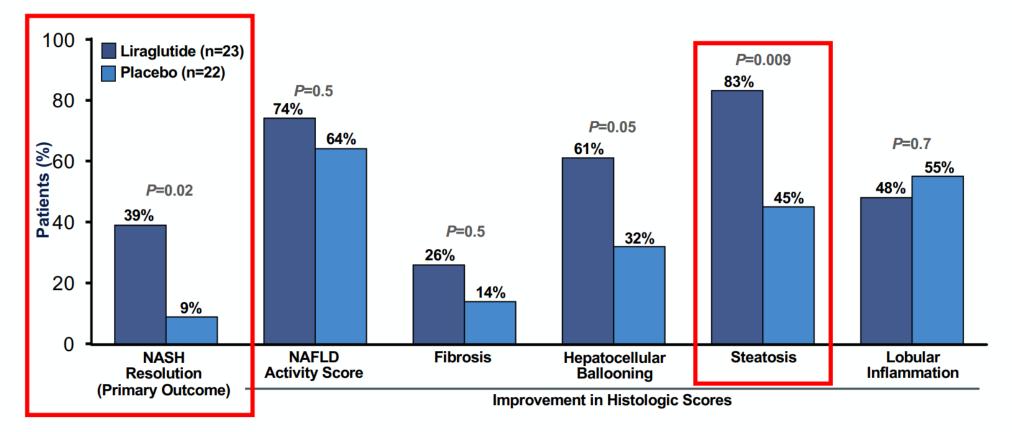

Weight loss

Glucose control Improvement of glucotoxicity Improvement of insulin resistance

> Inhibition/modulation of de novo lipogenesis

Decrease inflammatory markers and oxidative stress ↓ Body weight 4-6% (Lira); 13% (Sema)
 ↓ IHTG ~ 37-44%

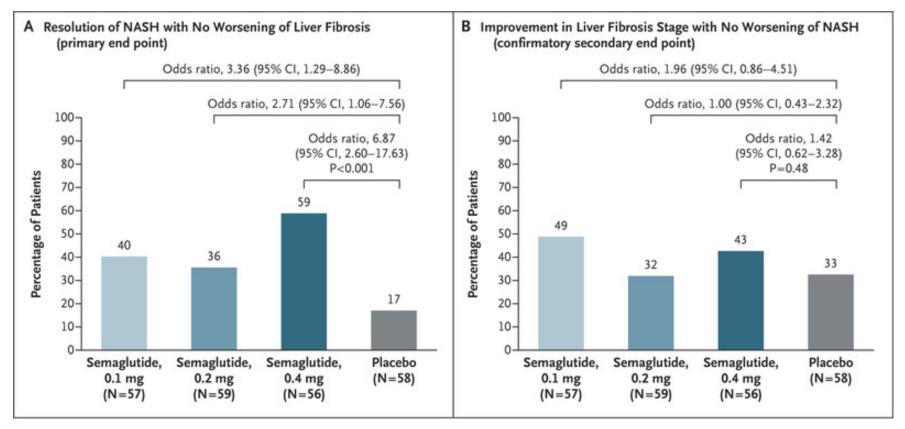
↓ FFA flux to the liver
↓ DNL
↓ lipolysis - independent of weight loss ?



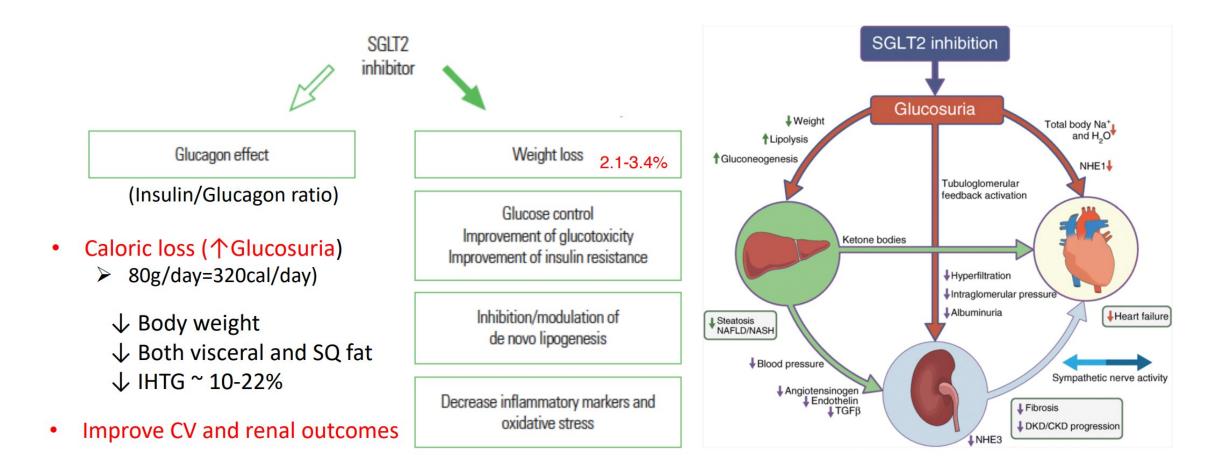
N=14 subgroup

Gastaldelli & Marchesini. J Hepatol 2016

LEAN Study (Liraglutide Efficacy and Action in NASH): Changes in Liver Histologic Features at Week 48


Patients With Improvement

Armstrong MJ, et al. Lancet. 2016;387:679-690


Semaglutide in NASH Study: Changes in Liver Histologic Features at Week 72

- Population: 320 patients (62% T2DM) randomized to daily semaglutide 0.1, 0.2, and 0.4 mg.
- Primary outcome: NASH resolution without worsening of fibrosis after 72 weeks (yes/no)
- Results: Semaglutide 0.1, 0.2, and 0.4 mg (40.4%, 35.6%, and 58.9%) vs placebo (17.2%; all p<0.05)</p>

Newsome PN et al. N Engl J Med 2020

Metabolic Effects of SGLT2 inhibition Leading to Improvement in Hepatic Parameters

1). Gerich JE. Diabet Med. 2010; 2).Bakris GL, et al. Kidney Int. 2009; 3). Ferrannini E, et al. Nat Rev Endocrinol. 2012; 4). Wanner, C. & Marx, N. Diabetologia 2018; 5). Jung CH, et al. J Obes Metab Syndr 2019.

Effect of SGLT2 Inhibitors on Intrahepatic Triglycerides in Patients with T2DM and NAFLD

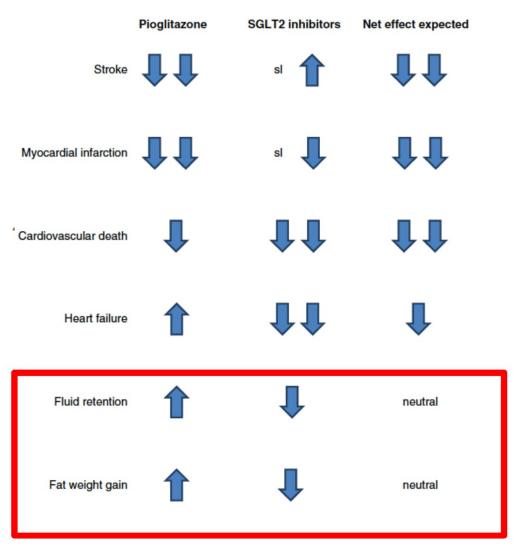
					Main study results		
Author, year	Agent	n	Duration (weeks)	Comparator	Body weight*	ALT	Liver fat*
Prospective open-label studies							
lto et al., 2017 (42)	Ipragliflozin	66	24	Pioglitazone	↓ 3.7%	\downarrow	↓¶
Ohta et al., 2017 (43)	Ipragliflozin	20	24	Standard care	↓ 2.5%	\downarrow	↓ 39%
Shibuya et al., 2018 (44)	Luseogliflozin	32	24	Standard care	↓ 3.2%	Unchanged	↓¶
Kuchay et al., 2018 (45)	Empagliflozin	50	20	Standard care	↓ 1.1%	\downarrow	↓ 26%
Shimizu et al., 2019 (46)	Dapagliflozin	57	24	Standard care	↓ 3.1%	\downarrow	\downarrow^+
Inoue et al., 2019 (47)	Canagliflozin	20	52	Standard care	↓ 3.4%	\downarrow	↓ 31%
Randomized controlled trials							
Bolinder et al., 2012 (48)	Dapagliflozin	67	24	Placebo	↓ 2.2%	—	Unchanged
Eriksson et al., 2018 (49)	Dapagliflozin	84	12	Placebo	↓ 2.2%	\downarrow	↓ 10%§
Cusi et al., 2019 (50)	Canagliflozin	56	24	Placebo	↓ 3.4%	Unchanged	↓ 18%§
Latva-Rasku et al., 2019 (51)	Dapagliflozin	32	8	Placebo	↓ 2.1%	Unchanged	↓ 13%
Kahl et al., 2019 (52)	Empagliflozin	84	24	Placebo	↓ 2.4%	Unchanged	↓ 22%

Arrows indicate statistically significant changes vs. comparator. *Comparison-corrected (open-label) or placebo-corrected relative treatment difference in weight and liver fat measured with MRI-based imaging techniques. ¶Liver fat measured as liver-to-spleen attenuation ratio on computed tomography. In Ito et al. (42) the decrease in liver fat was similar to pioglitazone (comparator). †Significant improvement in liver fat by controlled attenuation parameter (CAP; Fibroscan). §Not significant compared with placebo.

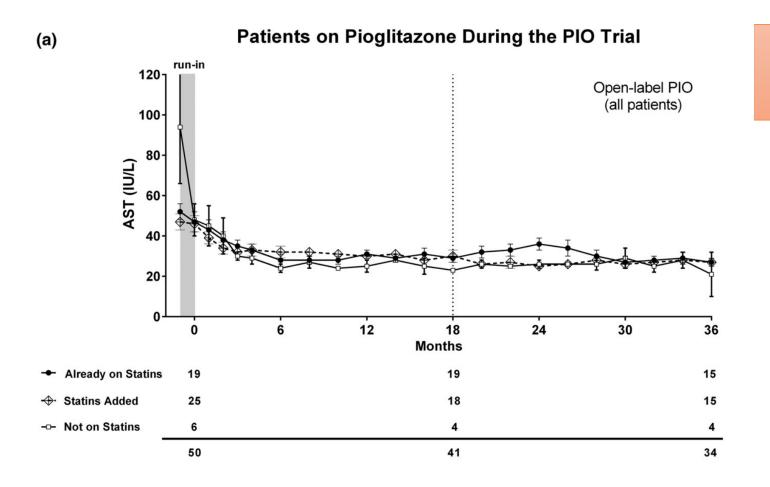
Cusi K., Diabetes Care. 2020;43:275-279.

Combination of Pioglitazone and SGLT2i

perspective


Diabetes, Obesity and Metabolism 18: 454–462, 2016. © 2016 John Wiley & Sons Ltd

Revitalization of pioglitazone: the optimum agent to be combined with a sodium-glucose co-transporter-2 inhibitor


R. A. DeFronzo¹, R. Chilton², L. Norton¹, G. Clarke³, R. E. J. Ryder⁴ & M. Abdul-Ghani¹

¹ Diabetes Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
 ² Cardiology Division, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
 ³ Diabetes Division and Department of Radiology, University of Texas Health Science Center and Texas Diabetes Institute, San Antonio, TX, USA
 ⁴ Diabetes and Endocrine Unit, City Hospital, Birmingham, UK

Dapagliflozin + Pioglitazone *Diabetes Care* 35:1473–1478, 2012 Empagliflozin + Pioglitazone Kovacs et al, clin Ther. 2015;37:1773-1788

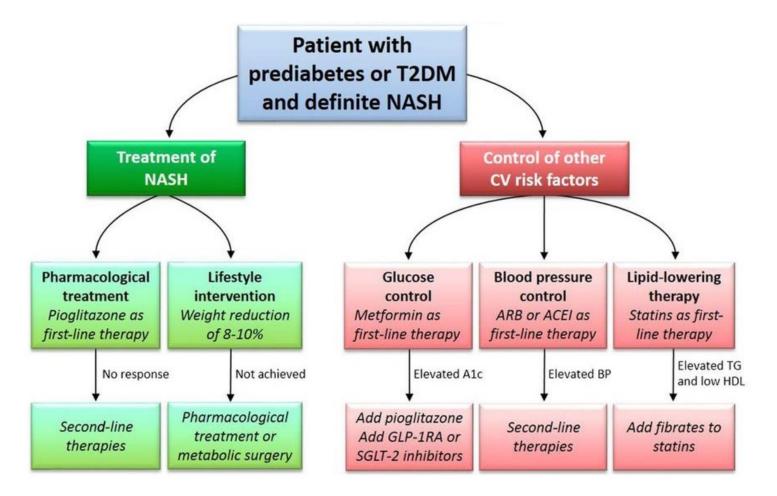
Liver Safety of Statins in Prediabetes or T2DM and Nonalcoholic Steatohepatitis

Adding or continuing statin therapy in NASH is safe.

Bril F, et al. J Clin Endocrinol Metab 2017

Statin Use is Associated with Reduced Cancer-related Mortality in Patients with NAFLD: A National Prospective Cohort Study

11,328 patients identified as having NAFLD from a total of 23,505 NHANES participants during 1999-2014


	Cancer morta	lity	All-cause mortality		
	HR* (95% CI)	P-value	HR (95% CI)	P-value	
Statin use	0.56 (0.43-0.75)	<0.001	0.64 (0.56-0.72)	<0.001	
Lipophilic statin use	0.61 (0.45-0.81)	0.001	0.66 (0.58-0.75)	<0.001	
Hydrophilic statin use	0.30 (0.13-0.68)	0.004	0.53 (0.40-0.70)	<0.001	

*Cox regression models and compared to statin non-users. All analyses are adjusted for gender, age, smoking history, body mass index, presence of diabetes and hypertension, and existing diagnosis of coronary artery disease, congestive heart failure, cerebrovascular accidents, or cancer at enrollment

Any statin use, regardless of lipophilic or hydrophilic type, is connected to a significant decrease in cancer-related and overall mortality in patients with NAFLD.

Hajifathalian K, et al. AASLD 2020

Management of Patients with T2DM and NASH

Fernando Bril & Kenneth Cusi. Dia Care 2017

Conclusion

- 1. Patients with T2DM are at risk for progression from NAFLD to NASH with fibrosis
 - NAFLD is common in patients with obesity and T2DM (up to 70% have NAFLD; 30% may have NASH and 15% F2-4)
 - Screening is needed high risk populations with obesity + T2DM
- 2. Pharmacological Management of Patient with NAFLD
 - Focused on cardiometabolic impact = \downarrow CVD
 - Although there are no FDA-approved drugs, use combination of therapies that improve NAFLD and also target CVD: PIO, GLP1RA, SGLT2i?.